
Statement of Requirements

Project Lima

25 January 2003

1 Overview

A software program that will factorise an arbitrary integer utilising probabilis-
tic algorithms and distributed computing methods. The factorisation will be
optimised for integers of length less than one hundred decimal digits.

2 Background

A large number of techniques exist for testing large integers for primality [2]
and (when composite) attempting to �nd their factors [3]. Some of these meth-
ods are probabilistic in the sense that they use pseudo-random sequences to
guide them, and others are probabilistic in the sense that they indicate primal-
ity/compositeness with measurable degrees of probability [2, 3].

The time-complexities of such factorisation algorithms are generally expo-
nential with respect to the length of a given composite's prime factors [3]. Al-
though using techniques of parallelism cannot change the complexities of these
algorithms, they can bring problems that are on the edge of tractability into the
realm of possibility by dividing the heavy parts of some algorithms which lend
themselves to parallelism [5].

This project shall implement an application software system that will apply
some of these methods, optimised for integers having up to one hundred decimal
digits.

3 Statement

Explicitly, the software program will meet the following requirements:

3.1 Factorisation

• The software shall take as an input some integer and produce a list of that
integer's factors as output, with a con�gurably high probability that the
factors produced are prime [2 p895].

• The software shall either produce the required output or terminate grace-
fully upon server administrator request.

• The software shall accept integers of any size, limited only by the comput-
ing resources available. However suitable warnings, indicating that failure

1



may occur shall be provided to the user when integers longer than 100
decimal digits are supplied as input.

• Various algorithms shall be employed to perform factorisation [3]. The
software should be capable of choosing the most appropriate algorithms to
factorise any given integer. The overriding concern should be to maximise
time-e�ciency.

3.2 Probabilism

3.2.1 Primality Checking

• Fully deterministic tests for primality are generally too slow to achieve
satisfactory performance [2 p888]. However, there exist algorithms that
indicate compositeness with absolute certainty and primality with a con�g-
urably high certainty [2 pp889-896]. Since these methods cannot indicate
primality with absolute certainty, they are classi�ed as probabilistic, but
the uncertainty is measurable and can be reduced so that the likelihood
of any composite being mistakenly identi�ed as prime is negligible. More-
over, these probabilistic methods considerably outperform the available
fully deterministic methods[2], and hence shall be used where appropriate
in ascertaining the primality of factors obtained.

3.2.2 Prime Factorisation

• Probabilistic techniques exist for extracting factors from composite inte-
gers. These techniques have better time-complexity for extracting larger
factors from integers than deterministic methods such as trial division [3].
Hence, where performance of factorisation can be improved by such meth-
ods, they shall be used. However, deterministic methods may also be used
if appropriate, such as may be the case for extracting smaller factors [2
p888].

3.2.3 Distribution

• Prime factorisation is a hard problem, possibly NP-complete, although
this has yet to be proven. Existing factorisation algorithms exhibit time-
complexities that are bounded by

O(N
(
N ε(N)

)
)

where ε(N) = c
√

ln lnN/ lnN

such that c is an constant greater than
√

8 [1 p386]. Although probabilis-
tic techniques provide some increase in performance, there are and may
always be fundamental limiting factors imposed by the speed of currently
available hardware. Once the limit of an individual processor's speed has
been reached the only recourse to further accelerate computation is to
parallelise part of the task, possibly on multiple processors, and possibly
across multiple machines. Such distribution techniques cannot change the
fundamental complexity of the algorithms in use, however ideally they are
able to linearly scale the time required to perform computation on some
arbitrary input [5], thus bringing a slightly larger range of composites into

2



the scope of such algorithms. Some factorisation algorithms lend them-
selves well to parallelism, since they operate on tasks that may be easily
divided into subtasks, in a scalable fashion [5]. Hence, where appropri-
ate, the processing of such algorithms shall be distributed across several
"machines".

• The distribution of tasks across several machines should be a means to
achieving the stated goals, and should not be the goal in itself. Distribu-
tion need not be used when the advantages of this method are outweighed
by the associated overheads.

• Reliable network communication shall be assumed, that is that any data
received by either client will be assumed to be the same as that which
was sent. Hence, beyond use of standard protocols, no additional error
checking or redundancy need be implemented. Futhermore, network la-
tency shall be assumed to be relatively low such that server and client
can communicate without concern as to whether the failure to reply is a
system failure or due to network latency.

3.3 Arithmetic

• Experience with large integer packages has shown that they are prone
to small bugs [unknown - someone please provide a reference]. However
dependability on accuracy for big integer arithmetic is essential. Failure
to compute correct values for any given operation could result in catas-
trophic errors in the result. Hence the libraries or functions used for
arithmetic shall be tested thoroughly to produce evidence that the arith-
metic is accurate �beyond all reasonable doubt�. Further multiplication
shall be performed on the factors in order to verify the �nal result.

• An assumption shall also be made as to the accuracy of the arithmetic
libraries and functions, in particular as to their self-consistency and accu-
rate provision of results within reasonable expectations.

3.4 Interface

• A user interface shall be provided for both server and clients o�ering sim-
ple interaction for the user and in particular in the case of the server,
the provision of abortion for the current operation. The server user in-
terface shall display the current progress of the operation to the server
administrator, both in plain English and with technical details.

3



4 Conclusion

This system shall be implemented by Wednesday, the 26th Feburary, 2003 by
the following group members:

David Cornish

Janet Wang

Jonathan Knowles

Matt Painter

Phil Wise

Raghav Kapoor

Tara Symeonides

4


